Through the Looking Glass

Visualization of requirements and test analysis networks

Sam Brown
L-3 Communications

Motivation for a Visualization Methodology

Studying characteristics of information flow in large Requirements sets

>40 documents

>20,000 tests or requirements

>25,000 linkages

Quickly communicate regarding patterns involving hundreds or thousands of requirements

Graphs and Networks

A very brief review of terms

Old idea(Euler,1731) but still very useful

Commonly used in network analysis and visualization

Core to network analysis and topology

Tools for Visualization

GUESS

- Standard and well-known graph tool
- Freely available and very flexible
- All examples in this presentation are from GUESS

Extensions and programming

- Gython/Jython/JavaSwing for search/queries
- Quick way to write analysis scripts
- JavaSwing allows for quick and elegant user interfaces

ICD for DB to Guess/GRV translation

- Simple way to generate GUESS datasets and record analysis results back into a managed database.
- Supports most Access/RDB variable types
- Provides for multi-user and configuration management

New tools coming

- Second generation of Guess by same developer (not yet available)
- 3-D visualization (Walrus: too many limitations for this application)

- Flight system requirements/ test network for operational S/C
- Dealing with large models requires care and some computer time
- This model has 20K nodes and 25K edges

Layouts

- GEM
 - Reliable, usually useful, slow for large models
 - Most examples in this presentation are GEM layouts (Oh wow)
- Spring/physics
 - Poor results on the larger models.
 - May be better for dynamical models
- Circle/Radial
 - Not useful for requirement/test networks
- MDS
 - Fast but ugly
- BINPACK
 - Fast and useful in some cases, but still a bit ugly
 - Separates subnets which can improve clarity
- Research opportunities
 - Hierarchical algorithm taking advantage of known network structure
 - Fast but not yet ready for prime time.

Editing/Exploring Using GRV

Simple jython script with rdb interface ~150 sloc using swing java dialogs

create NodeShow window

show name text type and source
editable comments IsValid IsVerified
keep running tab of face time
for the later edge show then
#shownode1, node2

#editable comments IsValid IsVerified

node = (name == self.nametextfield.getText())

class GRVNodeShow:

#keep tab of face time

Make a search window to find strings within name, text, source or type

note that aname is a LIST of nodes and we have to select [0] to get the first

def NodeShow OK(self,event):# this is the OK button event handler

Searching Using GRV

Swing Java/Jython script ~145 sloc

#Swing JTextField for Juno Guess.

#General purpose Juno field search.

Centers view on node and neighbors

Displays node label

#srb - NASA IVV

Outward Signs of Internal Troubles

- Patterns associated with difficulties
 - Hourglass (multiple inheritance)

Traceability is key to both requirements development and requirements verification Each project has unique approaches to traceability and verification

Pitfalls of Multi-Parenting

Three parents/Six children
Direct links to children from unrelated grandparents

Connectivity Studies

The cutting edge

- Connection statistics to support mathematical approaches
 - Methods for determinants of 20K
 by 20K connection matrices
 (sparse) Fiedler number det(D-A)
 - Validation of methodology across multiple projects

Laplacian (D-A)

1	-1				
-1	2	-1			
	-1	4	-1	-1	-1
		-1	1		
		-1		1	
		-1			1

Eigenvalue:

From linear algebra $Lx=\lambda x$ where λ is an eigenvalue And x is a non-null eigenvector Because L is symmetric the eigenvalues are all real $\lambda=\{0,\,0.486,\,1,\,1,\,2.428,\,5.086\}$

Stuff that is not yet done

- Hierarchical layout script
 - Group Req by documenteasy
 - Position based on level- easy
 - Sort to minimize edge crossings <- hard!</p>

And Stuff that is Almost Done

- Fully automatic bidirectional database/graphing tools
 - ICD a first step (third version)
 - Core jython scripts for GUESS are working well
 - Minor development to complete an Access/RDB interface

Summary

- Graphical approaches can be useful tools alongside traditional methods
- It is possible to visualize large models and quickly draw meaningful conclusions
- Jython/swing java tools are fast enough for even a very large models (20K nodes)
- Plenty left to explore for the imaginative.